Likelihood estimation for a longitudinal negative binomial regression model with missing outcomes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Likelihood estimation for a longitudinal negative binomial regression model with missing outcomes

Joint damage in psoriatic arthritis can be measured by clinical and radiological methods, the former being done more frequently during longitudinal follow-up of patients. Motivated by the need to compare findings based on the different methods with different observation patterns, we consider longitudinal data where the outcome variable is a cumulative total of counts that can be unobserved when...

متن کامل

Estimation of Count Data using Bivariate Negative Binomial Regression Models

Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...

متن کامل

Negative Binomial Regression Models and Estimation Methods

The Poisson-Gamma model has properties that are very similar to the Poisson model discussed in Appendix C, in which the dependent variable i y is modeled as a Poisson variable with a mean i  where the model error is assumed to follow a Gamma distribution. As it names implies, the Poisson-Gamma is a mixture of two distributions and was first derived by Greenwood and Yule (1920). This mixture di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Royal Statistical Society: Series C (Applied Statistics)

سال: 2009

ISSN: 0035-9254,1467-9876

DOI: 10.1111/j.1467-9876.2008.00651.x